ECL1001|Four segment indicator, single-chip Power Bank dedicated IC


規格書下載


​​ Four segment indicator,

single-chip Power Bank dedicated IC

ECL1001

 

 

 

General Description

ECL1001 includes a programmable high efficiency BUCK charger, four LED battery indicator, a Torch LED driver, a high

efficiency Boost converter, and an overdischarge protector. It is suitable for single-cell lithium -ion / lithium polymer battery charge and discharge management, and can be widely used in power bank, handheld devices, PDA, smart phones and

so on. It ​​ integrates high ​​ efficiency synchronous ​​ BUCK battery charge management , the maximum charging current of up to 2A ; the integrated boost DC / DC can output the maximum discharge current reaches 1.5A , and intelligent judgments load insertion and removal, automatic boost and automatic shutdown; the integrated battery detection and 4 -segment display, both in the state of charge or ​​ discharge, can effectively indicate the current battery remaining power.

By a unique key , it can easily control the boost switch start and Torch On/off . Torch LED can output maximum 50mA of

current. ECL1001 also integrates a battery temperature detection, low battery voltage protection, output over current / over voltage / short circuit protection circuit to ensure that chip and system security.

 

Features

One Key Control

1.5A charge current

2A discharge current

50mA Torch application integration

Automatically ​​ start ​​ when ​​ the ​​ device ​​ is ​​ plugged ​​ into power bank(need other circuits)

Automatically ​​ shut ​​ down ​​ when ​​ device ​​ is ​​ full ​​ or ​​ be plugged out  ​​​​ 16 seconds

4 segment battery indicator

Low standby power consumption

Automatic ​​ shut ​​ down ​​ when ​​ Battery ​​ voltage ​​ is ​​ lower than 3.1V

 

Applications

Single-chip Power Bank solution

Single-cell lithium-ion / lithium polymer battery charger

Fixed 5V Boost Coverter

 

Typical Application Circuit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: L1 is the lowest indicator, and L1 is the reference of L2~L4, it must connect to a LED.

 

Pin Assignment

 

 

 

 

 

 

 

 

 

 

SOP Pin

Number

QFN Pin

Number

Pin Name

Function Description

1

17

VOUT

Boost output port,5V

2

19, 20

LX

Boost inductor port

3

18, 1

GNDA

Analog ground

4

2, 3

SW

Inductive charger port

5

4, 5

VIN

Charger power input port

6

6

SENSE

Charger current detection port

7

7

BATT

Battery access terminal

8

8

NTC

Battery temperature detection port , an external NTC

resistor

9

9

KEY

Key input port , built-in pull-up resistor

10

10

L1

Battery indicator 1, output port , constant current 3mA

11

11

L2

Battery indicator 2 , output ports , constant current 3mA

12

12

L3

Battery indicator 3 , output ports , constant current 3mA

13

13

L4

Battery indicator 4 , output ports , constant current 3mA

14

14

GNDD

Digital Ground

15

15

Torch

LED Torch output ports, 50mA max.

16

16

SHUTDOWN

Load path control port

 

Ordering Information

ECL1001 ​​ XX ​​ X

Embossed Tape :

RStandard Feed

SReverse Feed

 ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​​​ Package Type

 ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​​​ M3SOP16

 ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​​​ Q2QFN4x4

 

Note: Reverse Tape and other packages to be customized, please contact our sales department.

 

 

 

Marking Information

Part No

Package

Mark

Information

ECL1001M3X

SOP16

  • ①②③④Representatives and internal processes Edition DOI

  • XXXXXX Represents production lot

ECL1001Q2X

QFN4x4

 

Block Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absolute Maximum Ratings

Parameter

Symbol

Maximum Rating

Unit

Input Voltage

VIN

-0.3-6.5

V

VBATT

VBAT

-0.3-6.5

Output Voltage

VOUT

-0.3-6.5

Other terminal voltage

VOTHERS

-0.3-6.5

LX switch current

ILX

5

A

SW switching current

ISW

±2.5

A

Operating temperature range

TOP

-45-85

Lead Soldering Temperature ( 10 seconds )

TLEAD

300

Lead Soldering Temperature ( 10 seconds )

VESD

4000

V

 

Note: ​​ Absolute ​​ maximum ​​ ratings ​​ are ​​ under ​​ any ​​ conditions ​​ cannot ​​ exceed ​​ the ​​ rating. ​​ In ​​ case ​​ exceed ​​ this ​​ rating; ​​ the product could suffer physical damage

 

Electrical Characteristics

Test Condition:  ​​​​ VBATT=3.6V,VOUT=5V,VIN=5V,RS=0.05Ω (Ta=25 ​​ ℃ Unless Otherwise Specified)

Parameter

Symbol

Conditions

Min

Type

Max

Unit

Key end turn-on voltage

VKEY

VBATT=3.6V

-

-

1.2

V

Key end of the pull-up resistor

RKEY

 

 

500K

 

Ω

NTC temperature shutdown

voltage

VHOT

 

1.57

1.67

1.77

V

NTC Low Voltage Shutdown

VCOLD

 

3.23

3.33

3.43

V

Standby Current

ISTANDBY

 

-

-

1

uA

BOOST DC-DC    parameters

Input Voltage

VBATT

IOUT=1A

3.2

-

5

V

Output Voltage

VOUT

IOUT=1A

4.9

5.0

5.1

Shutdown Current

IOFF

 

-

0.01

1

µA

No Load Current

IC

VBATT=3.6V,VOUT=5V

-

200

-

μA

Switching frequency

FS

IOUT=2A

1.25

1.5

1.75

MHz

Switching frequency

DMAX

VBATT=3.6V

75

-

-

%

Power tube resistance

R

VBATT=3.6V,ISW=2A

-

65

100

mΩ

Power tube resistance

ILX

VBATT=4.2V

3.5

4.5

5

A

Linear adjustment degree

ΔVLINE

IOUT=1A,VBATT=3.2V to 4.5V

-

0.2

-

%

Load Regulation degrees

ΔVLOAD

VBATT=3.6V,IOUT=10mA to2A

-

0.22

-

%

Load Regulation degrees

TSHD

VBATT=3.6V,IOUT=100mA

143

153

163

Thermal Shutdown Hysteresis

Δ TSHD

VBATT=3.6V,IOUT=100mA

20

25

30

 

 

 

Parameter

Symbol

Conditions

Min

Type

Max

Unit

Automatic Shutdown

Determine Current

ISHUTDOWN

VBAT=4.0V

-

20

-

mA

Automatic Shutdown

waiting time

TSHUTDOWN

IOUT=0mA

-

16

-

S

Charger Electrical Parameters

Input Voltage

VIN

 

4.35

5

6

V

Input Current

IQ

Standby Mode VIN<4.35V

50

60

70

µA

ISTB

End of Charge

0.83

0.92

1.2

mA

Battery terminal current

IR

reverse leakage current,

VBATT>VIN

0

0.01

0.1

µA

IOFF

Remove VIN

-

-

0.1

uA

IB

Standby Mode( End of

charge )

150

200

250

µA

Sensed pressure

VSENSE

3V<VBATT<4.18V

90

100

110

mV

Constant current charging

current

ICHARGE

VBATT<4.18V

-

VSENSE/RS

-

A

Charging up cut-off current

IEND

VBATT>4.2V

50

65

80

mA

Trickle Charge limit voltage

VTR

VBATT Rising

2.8

2.92

3

V

Hysteresis voltage trickle

charging

Δ VTR

 

60

80

110

mV

Output control voltage

VFLOAT

0<TA<85, IBAT = 40mA

4.158

4.2

4.242

V

Recharge the battery voltage

VRECHARGE

VBATT falling

-

4.07

-

V

Hysteresis voltage battery

recharge

Δ VREG

VBATT - VRECHARGE

90

130

170

mV

Oscillator Frequency

FOSC

RL=100mA

1.35

1.5

1.65

MHz

Low-voltage lockout power

VUVLO

VIN adjusted from low to high

4.3

4.35

4.45

V

Supply high voltage lockout

VINOVP

VIN adjusted from low to high

6.4

6.5

6.6

V

Battery high voltage lockout

VBOVP

Low battery voltage from VIN

to adjust

4.32

4.37

4.42

V

LED Electrical parameters

Current battery indicator

ILED

VBAT=3.4V~4.2V

2.5

3

3.5

mA

Current matching

Δ IMATCH

VBAT=3.6V

-

5

-

%

Torch LED current

Itorch

VBAT=3.2V-4.2V

-

-

50

mA

 

 

 

 

 

 

Operational Principle

 

ECL1001 ​​ is ​​ an ​​ single-chip ​​ power ​​ bank ​​ solution, ​​ that ​​ integrated ​​ DC ​​ / ​​ DC ​​ charge ​​ management, ​​ DC ​​ / ​​ DC

step-up, voltage sensing and power display. It complete the function integrated three or more of the original chip to

the single chip. Performance, you can set the maximum charge current 2A, maximum output current of the boost

can be achieved 1.5A, and shut down power consumption is almost zero ( less than 1uA).

 

Button Operation

It is the one-touch control. In the off state, a short click Key (short press times greater than 60mS ​​ less than 2S), cause power on, display the power, and turn on the boost. After 4 seconds, shut down the power display, and

L1 starts flashing (0.5Hz). L1 will always flashing when it is boosting. During the time, another short press Key, it

can show the power 4 seconds once again, and the booster is not being affected. The boost will automatically turns off, L1 blinking will stops and the device will enters the shutdown state, when the device is fully charged or the load is removed after 16 seconds. When the battery voltage is lower than 3.5V, with a short press Key, ​​ L1 will flash explosion 4S to alert the low battery. In the boost process, when the battery voltage is lower than 3.1V, the output will be automatically shut down to protect the battery not be over-discharged. Long press Key (pressing time is greater than 2S), will open the Torch function, and long press Key again to turn off the Torch. When the battery voltage is lower than 3.1V, you cannot open the Torch and output. But when the Torch has been turned on, it will not turn off when the battery voltage is too low. During charging, short press operation is masked, but long press can turn on or turn off the Torch.

 

Operating Mode

Function

short press Key (60ms<Key<2S)

Long press Key (Key>2S)

Charging mode

Boost

/

/

Power display

/

/

Torch

/

On or Off

Boost Mode

Boost

On

/

Power display

Show 4S

/

Torch

/

On or Off

 

Power Display

When the ECL1001 is during the boost or charging in, the voltage on the BATT monitored and calculated by

L1-L4  shows  the  current  consumption,  and  each  LED  represents  25%  of  the  power.  Battery  charge  and

discharge curves, as shown

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charging, the battery indicator table below

Battery voltage

Indicator Number

GraphicL1L2L3L4

<3.72

L1 flashing

▲□□□

3.72-3.87

L2 flashing

■▲□□

3.87-4.02

L3 flashing

■■▲□

>4.02

L4 flashing

■■■▲

End of Charge

All light

■■■■

 

(Represents ​​ a ​​ long ​​ bright, ​​ Represents ​​ LED ​​ OFF, ​​ Represents ​​ Charging ​​ Flashing, ​​ Frequence:1HZ, ​​ Pulse Width: 0.5S)

 

Bosting, the battery indicator table below (Short press display , four seconds and then turns off)

Battery voltage

Indicator Number

GraphicL1L2L3L4

>3.85

4

■■■■

3.85-3.71

3

■■■□

3.71-3.55

2

■■□□

3.55-3.43

1

■□□□

3.43-3.2

Flashing warning

□□□

<3.2

shut down

□□□□

 

(Represents a long bright, ​​ Represents LED OFF,Represent Low pressure alarm flashes, Frequence: 4HZ)

 

These ​​ voltage ​​ parameters ​​ for ​​ reference ​​ only ​​ , ​​ the ​​ actual ​​ difference ​​ because ​​ the ​​ battery ​​ and ​​ different ​​ production batches have voltage differences.

 

The power display will last 4 seconds, then L1 change to flashing , flashing period 2S, pulse width 0.25S, other

LED goes off.

 

charging modes

Built-in constant current constant voltage battery charging management, through a current -mode PWM control DC-DC topology to achieve, the charging current is set by an external connection on both ends of the VBATT ​​ and ​​ SENSE ​​ resistor ​​ to ​​ set ​​ the ​​ chip ​​ internally ​​ by ​​ a ​​ high ​​ accuracy ​​ reference ​​ to ​​ set ​​ the ​​ charging voltage.

When the input voltage is below the UVLO level (4.35V), the chip enters SLEEP MODE, then the chip power ​​ consumption ​​ to ​​ 60μA ​​ or ​​ less. ​​ When ​​ the ​​ input ​​ voltage ​​ rises ​​ above ​​ the ​​ UVLO ​​ voltage, ​​ the ​​ charger enters ​​ charging ​​ mode, ​​ then ​​ L1-L4 ​​ shows ​​ charging ​​ blinking. ​​ If ​​ the ​​ battery ​​ voltage ​​ is ​​ lower ​​ than ​​ the ​​ trickle charge threshold voltage (2.9V), the charger enters trickle charge mode, and the trickle charge set to 25 % of the maximum ​​ charge ​​ current. ​​ When ​​ the ​​ battery ​​ voltage ​​ exceeds ​​ the ​​ trickle ​​ charge ​​ threshold, ​​ the ​​ charger

enters ​​ constant ​​ current ​​ charging ​​ mode, ​​ then ​​ the ​​ charging ​​ current ​​ by ​​ the ​​ internal ​​ 100mV ​​ reference ​​ and

external sense resistor to decide, calculated as follows: ICHARGE=100mV/RS. When the battery voltage is close to the target value 4.2V, the charge current of the chip begins to drop and ​​ the ​​ chip ​​ enters ​​ constant ​​ voltage ​​ charging ​​ mode ​​ LDO. When ​​ the current ​​ drops ​​ to ​​ 65mA, ​​ the ​​ chip ​​ stops charging, L1-L4 full brightness. When the battery not leave BATT terminal and the battery voltage drops to 4.07V, the chip will automatically enter RECHARGE state, and restart the charge cycle. Once ​​ in ​​ charging ​​ mode, ​​ the ​​ boost ​​ circuit ​​ will ​​ automatically ​​ stop ​​ when ​​ the ​​ short ​​ press ​​ operation ​​ is masked, but the long press can turn on or turn off the light. Exit charge mode after entering standby mode.

 

Boost mode

In shutdown mode, short press Key or detect access to the load, then the boost circuit starts operating. In boost circuit, it can achieve efficient and stable work in a wide load range, using PWM current mode and voltage mode PFM automatic switching. Building a 4.5A power switch, lithium battery can deliver up to 2A of output current, and efficiency of 90% (up 95%). The ​​ SHUTDOWN ​​ pin ​​ with ​​ an ​​ external ​​ NMOS ​​ transistors, ​​ is ​​ to ​​ achieve ​​ the ​​ power ​​ path ​​ completely shutdown. When the chip is normal working, SHUTDOWN is high, and VOUT- used as a

 

 

load. Work in the chip off or an abnormal state (such as the short-circuit protection, etc.), SHUTDOWN client will drop as low to achieve the power path completely shutdown. SHUTDOWN end remain unconnected when it is not in use, and prohibit connecting to VBATT or GND terminal. The ​​ external ​​ NMOS  ​​​​ transistor  ​​​​ with  ​​​​ the  ​​​​ use ​​ of ​​ SHUTDOWN ​​ function,  ​​​​ need ​​ very ​​ little  ​​​​ resistance RDSON, in order to ensure high efficiency and ideal load short-circuit protection. Boost ​​ working, ​​ if ​​ detected ​​ the ​​ VIN ​​ voltage ​​ greater ​​ than ​​ 1.6V, ​​ it ​​ is ​​ considered ​​ to ​​ enter ​​ charge ​​ mode, SHUTDOWN immediately pulled low, and the output path closed. When the VIN is removed, it need to re-boost button before resuming work. Boost ​​ after ​​ the ​​ start, ​​ if ​​ it ​​ detects ​​ the ​​ output ​​ load ​​ current ​​ is ​​ very ​​ small ​​ ( ​​ less ​​ than ​​ 20mA),keeping ​​ this state ​​ for ​​ more ​​ than ​​ 16S, ​​ chips ​​ that ​​ are ​​ unloaded ​​ automatically ​​ enter ​​ standby ​​ mode, ​​ where ​​ the ​​ static ​​ power consumption is almost zero.

 

Temperature protection

ECL1001  built-in  temperature  compensation  circuit,  when  the  internal  temperature  reaches  100  ,  the

maximum charging current or the maximum output current will fall with increasing temperature, reducing the

possibility  of  thermal  breakdown  of  the  chip,  improving  the  reliability  of  the  system  on  a  chip.  When  the

temperature rises to 150  , the chip enters the temperature protection, cutting output or stopping charging.

The chip also comes with battery temperature detection function, and this function through the NTC side to 

achieve. The VBATT connect to divider resistors RT1 and RT2, and the NTC is terminated with a negative

temperature  coefficient  thermistor  of  10KΩ  RNTC  (MF103F338F),  RT1  and  RT2  according  to  battery

temperature monitoring range and thermistor resistance values to determine. This pin can be directly connected to GND, to shield the temperature detection function.

 

Application Specification

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number

Part Number

Model ( reference value )

Quantity

1

U1

ECL1001

1

2

S1

SK34

1

3

LBLC

3.3uH

2

4

RS

According to the charging current custom,0.05Ω

1

5

RT1

According to the temperature range from the set, 2.54K

1

6

RT2

According to the temperature range of custom, 5.32K

1

7

C1

22uF

1

8

C2

22uF

1

9

C3

100uF

1

10

N1

MOSFET N, LN2312

1

11

D5

50mA Bright LED

1

12

D1~D4

LED lights ( red / blue / green )

1

13

RL1

Limiting resistor, 75Ω

1

14

RL2

Limiting resistor , 47Ω

1

15

BUTTON1

BUTTON ​​ ,K1

1

16

C4

1uF

1

 

Choice of Components

1. The selection of booster circuit output capacitor C3. The selection Output Capacitor depends on the output ​​ voltage ​​ ripple. ​​ In ​​ most ​​ cases, ​​ you ​​ want ​​ to ​​ use ​​ low ​​ ESR ​​ capacitors, ​​ such ​​ as ​​ ceramics ​​ and ​​ polymers

electrolytic ​​ capacitors. ​​ If ​​ you ​​ use ​​ a ​​ high- ​​ ESR ​​ capacitor,c ​​ you ​​ need ​​ to ​​ carefully ​​ review ​​ the ​​ converter

frequency compensation, and in the output circuit terminal may need to add an additional capacitor.

 

2. Choose textures and values of inductor LB and LC. Because the inductor value affects the input and output ripple voltage and current, so the inductor selection is the key of inductive voltage converter design. Low ​​ equivalent ​​ series ​​ resistance ​​ of ​​ the ​​ inductor, ​​ the ​​ power ​​ conversion ​​ efficiency ​​ is ​​ the ​​ best. ​​ Choose ​​ the

inductor saturation current rating, make it greater than the steady-state circuit inductor current peak.

 

3. Boost converter to choose ​​ fast forward voltage drop of the schottky rectifier diodes, so ​​ make it low power consumption and high efficiency. The average current of schottky diode rating should be greater than the maximum output current of the circuit.

 

4. Try to use a small internal resistance, fast switching speed of the MOSFET N, so make it low power

consumption ​​ and ​​ high ​​ efficiency, ​​ and ​​ be ​​ ready ​​ to ​​ heat ​​ treatment. ​​ LN2312 ​​ for ​​ the ​​ N-channel ​​ enhancement

type field effect transistor, RDSON = 27mohm @ VGS = 3.6V, can meet the conditions of use.

MOSFET N try to use a small internal resistance, fast switching speed, low power consumption and high

efficiency make it, and be ready to heat treatment. LN2312 for the N-channel enhancement type field effect

transistor, RDSON = 27mohm @ VGS = 3.6V, can meet the conditions of use.

 

 

 

 

 

5、Temperature protection divider resistor selection RT1/RT2 The VBATT connects the dividing resistors RT1 and RT2, and the NTC connects a negative temperature coefficient thermistor 10KΩ RNTC (MF103F338F),  ​​​​ RT1  ​​​​ and  ​​​​ RT2  ​​​​ according  ​​​​ to  ​​​​ battery  ​​​​ temperature  ​​​​ monitoring  ​​​​ range  ​​​​ and  ​​​​ thermistor resistance values to determine

Suppose ​​ the  ​​​​ set ​​ battery ​​ temperature  ​​​​ range ​​ TL ​​ ~ ​​ TH, ​​ (TL ​​ <TH); ​​ negative  ​​​​ temperature  ​​​​ coefficient

thermistor ​​ (NTC). ​​ RTL ​​ is ​​ the ​​ resistance ​​ at ​​ temperature ​​ TL, ​​ and ​​ RTH ​​ is ​​ the ​​ resistance ​​ at ​​ temperature ​​ TH,

RTL> RTH.

 

At the temperature TL , NTC V_TL the voltage is:

 

 

At the temperature TH , NTC voltage V_TH is:

 

 

 

 

 

 

Similarly, if the battery using the positive temperature coefficient (PTC) thermistors, then RTH> RTL, in the formula of RT1 and RT2, the RTL and RTH can be reversed.

Derived from the above it can be seen that the subjecting set temperature range has nothing to do with supply voltage VIN. It is to do with RT1, RT2, RTL, and RTH; including RTL, RTH battery can access the relevant manuals or obtained through experimental tests. In ​​ practical ​​ application, ​​ if ​​ only one ​​ side ​​ of ​​ the ​​ temperature characteristics ​​ of ​​ concern, ​​ such ​​ as thermal protection, ​​ it ​​ cannot ​​ RT2, ​​ RT1 ​​ can ​​ use ​​ only. ​​ Calculating ​​ R1 ​​ becomes ​​ very simple, ​​ and ​​ do ​​ not ​​ repeat ​​ them here.

For ​​ example: ​​ Select ​​ the ​​ NTC ​​ resistor ​​ 10K, ​​ RT1=2.54K, ​​ RT2=5.32K. ​​ -20 ​​ to ​​ 60 ​​ degrees ​​ to ​​ achieve ​​ a

temperature range of detection.

 

PCB Layout Notes

1、Sampling resistance RS, and the filter capacitor C1, C2 as close IC.

2、High-current paths must be thick and wide wiring, and cabling area as small as possible .

3、Distinguish GNDA and GNDD alignment , grounding must be good.

4、High-frequency switching path is not through-hole, not the bottom cloth signal line inductance.

5、Ground area is large enough, and the board should shop copper to control IC heat well.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Information

SOP16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QFN4x4