EC5912|200MHz, CMOS, Rail-to-Rail Output Operational Amplifier


規格書下載


 

200MHz, ​​ CMOS, Rail-to-Rail

Output Operational Amplifier

EC5912

 

 

 

General Description

 

The ​​ EC5912 ​​ is ​​ wideband, ​​ low-noise, ​​ low-distortion ​​ operational ​​ amplifier, ​​ that ​​ offer ​​ rail-to-rail ​​ output ​​ and ​​ single-supply operation down to 2.2V. They draw 5.6mA of quiescent supply current, as well as low input voltage-noise density (13nV/Hz) and low input current-noise density (400fA/Hz). These features make the devices an ideal choice for applications that require low ​​ distortion ​​ and ​​ low ​​ noise. The ​​ EC5912 ​​ has ​​ output ​​ which ​​ swing ​​ rail-to-rail ​​ and ​​ their ​​ input ​​ common-mode ​​ voltage ​​ range includes ground ​​ and offer ​​ wide ​​ bandwidth ​​ to 200MHz (G=+1) .They are specified ​​ over the ​​ extended industrial temperature range (-45 ~ 125).The single EC5912 is available in space-saving, MSOP-8 and SOP-8 packages.

Features

 

Single-Supply Operation from +2.2V ~ +5.5V

Rail-to-Rail Input / Output

Gain-Bandwidth Product: 200MHz

Low Input Bias Current: 10pA

Low Offset Voltage: 1mV

Quiescent Current: 5.6mA

Available in MSOP-8 and SOP-8 Packages

 

 

 

 

 

Applications

 

 

Portable Equipment

Mobile Communications

Smoke Detector

Sensor interface

Medical Instrumentation

Handheld Test Equipment

imaging / video

 

 

​​ 

​​ 

 

 

Pin Configurations(Top View)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

​​ 

 

 

 

 

Figure 1. Pin Assignment Diagram (MSOP-8 and SOP-8 Package)

 

 

 

 

 

 

Ordering Information

 

 ​​​​ EC5912NN XX  ​​​​ X

M1SOP-8L

R1MSOP-8L

 

 

​​ 

 

 

 

 

 

 

 

 

 

 

 

Part Number

Package

Marking

Marking Information

EC5912NNR1R

MSOP-8L

5912

LLLL

YYWW

  • LLLL:Last four Number of Lot No

  • YY:Year Code

  • WW:Week Code

EC5912NNM1R

SOP-8L

​​ EC5912

LLLLL

YYWWT

1. LLLLLLast five Number of Lot No

2. YYYear Code

3. WWWeek Code

4. TInternal Tracking Code

 

 

 

Absolute Maximum Ratings

Condition

Min

Max

Power Supply Voltage (VDD to Vss)

-0.5V

+7V

Analog Input Voltage (IN+ or IN-)

Vss-0.5V

VDD+0.5V

Operating Temperature Range

-40°C

+125°C

Junction Temperature

+150°C

Storage Temperature Range

-65°C

+150°C

Lead Temperature (soldering, 10sec)

+300°C

Package Thermal Resistance (TA=+25°C)

MSOP-8, θJA

210°C

SOP-8, θJA

130°C

 

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 

 

 

 

 

 

 

 

Electrical Characteristic

​​ (VDD ​​ = ​​ +5V, ​​ Vss ​​ = ​​ 0V, ​​ VCM ​​ = ​​ 0V, ​​ VOUT ​​ = ​​ VDD/2, ​​ RL ​​ tied ​​ to ​​ VDD/2, ​​ SHDNB ​​ = ​​ VDD, ​​ TA = ​​ -40°C ​​ to +125°C, unless otherwise noted. Typical values are at TA =+25°C.) (Notes 1,2)

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Units

Supply-Voltage Range

VDD

Guaranteed by the PSRR test

2.2

-

5.5

V

Quiescent Supply Current (per

Amplifier)

IQ

VDD = 5V

-

7

8.4

mA

Input Offset Voltage

VOS

TA=25°C

-

1

-

mV

TA=-40°C~+85°C

-

8

-

TA=-40°C~+125°C

-

-

10

Input Offset Voltage Tempco

ΔVOS/ΔT

 

-

2

-

μV/°C

Input Bias Current

IB

(Note 3)

-

10

100

pA

Input Offset Current

IOS

(Note 3)

-

10

100

pA

Input Common-Mode Voltage

Range

VCM

Guaranteed by the TA = 25C

CMRR test, TA = -40C ~ +125C

-0.1

-

VDD+0.1.5

V

Common-Mode Rejection Ratio

CMRR

Vss-0.1VVCMVDD+0.1V

TA = 25C

-

75

-

dB

Vss≤VCM≤VDD

TA = 25C

72

90

-

Vss-0.1VVCMVDD+0.1V

TA = -40C ~ +125C

-

68

-

Power-Supply Rejection Ratio

PSRR

VDD = +2.2V to +5.5V

75

90

-

dB

Open-Loop Voltage Gain

AV

RL = 10k to VDD/2

VOUT = 100mV to VDD-125mV

90

100

-

dB

RL = 1k to VDD/2

VOUT = 200mV to VDD-250mV

80

95

-

RL = 500 to VDD/2

VOUT = 350mV to VDD-500mV

70

80

-

Output Voltage Swing

VOUT

|VIN+-VIN-|  10mV                  VDD-VOH

-

10

35

mV

RL = 10k to VDD/2              ​​​​  VOL-VSS

-

10

30

|VIN+-VIN-|  10mV                  VDD-VOH

-

80

50

RL = 1k to VDD/2                  VOL-VSS

-

30

50

|VIN+-VIN-|  10mV                  VDD-VOH

-

100

140

RL = 500 to VDD/2                VOL-VSS

-

100

140

Output Short-Circuit Current

ISC

Sinking or Sourcing

-

60

-

mA

Input Capacitance

CIN

 

 



 

pF

Bandwidth

GBW

AV = +1V/V

-

200

-

MHz

Slew Rate

SR

AV = +1V/V

-

125

-

V/μs

 

 

 

Electrical Characteristic

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Units

Differential Phase error (NTSC)

DP

G=2,RL=150Ω

-

0.03

-

deg

Differential Gain error (NTSC)

DG

G=2,RL=150Ω

-

0.09

-

dB

Settling Time

tS

To 0.01%, VOUT = 2V step

AV = +1V/V

-

52

-

ns

Capacitive-Load Stability

CLOAD

No sustained oscilliations

AV = +1V/V

 

200

 

pF

Input Voltage Noise Density

en

ƒ = 1kHz

-

15

-

nV/Hz

ƒ = 30kHz

-

13

-

Input Current Noise Density

in

ƒ = 1kHz

-

400

-

fA/Hz

Total Harmonic Distortion plus

Noise

THD+N

ƒC=5MHZ,VOUT=2Vp-p,G=+2

-

-60

-

dB

 

 

 

 

Note 1:  ​​​​ All ​​ devices ​​ are ​​ 100% ​​ production ​​ tested ​​ at ​​ TA = ​​ +25°C; ​​ all ​​ specifications ​​ over ​​ the ​​ automotive ​​ temperature ​​ range ​​ is guaranteed by design, not production tested.

Note 2:  ​​​​ Parameter is guaranteed by design.

Note 3:  ​​​​ Peak-to-peak input noise voltage is defined as six times rms value of input noise voltage.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPLICATION INFORMATION

Size

EC5912 ​​ series ​​ op ​​ amps ​​ are unity-gain ​​ stable and suitable  ​​​​ for  ​​​​ a  ​​​​ wide  ​​​​ range  ​​​​ of  ​​​​ general-purpose applications. ​​ The small ​​ footprints ​​ of ​​ the ​​ EC5912 series  ​​​​ packages  ​​​​ save  ​​​​ space  ​​​​ on  ​​​​ printed  ​​​​ circuit boards and enable the design of smaller electronic products.

 

Power Supply Bypassing and Board Layout

EC5912 ​​ series  ​​​​ operates  ​​​​ from  ​​​​ a  ​​​​ single  ​​​​ 2.5V ​​ to 5.5V ​​ supply ​​ or ​​ dual ​​ ±1.25V ​​ to ​​ ±2.75V ​​ supplies. For ​​ best ​​ performance, ​​ a ​​ 0.1μF ​​ ceramic ​​ capacitor should ​​ be ​​ placed ​​ close ​​ to ​​ the ​​ VDD ​​ pin ​​ in ​​ single supply operation. For ​​ dual supply operation, both VDD  ​​​​ and  ​​​​ VSS  ​​​​ supplies  ​​​​ should  ​​​​ be  ​​​​ bypassed  ​​​​ to ground with separate 0.1μF ceramic capacitors.

 

Low Supply Current

The ​​ low ​​ supply ​​ current ​​ (7mA) ​​ of ​​ EC5912 ​​ series will ​​ help ​​ to ​​ maximize battery ​​ life. ​​ They are ideal for battery powered systems

 

Operating Voltage

EC5912 ​​ series ​​ operate ​​ under ​​ wide ​​ input ​​ supply voltage (2.5V to5.5V). In addition, all

Temperature specifications  ​​​​ apply  ​​​​ from  ​​​​ -40  ​​​​ to +125 Most behavior remains unchanged

throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime

 

Rail-to-Rail Input

The input common-mode range of EC5912 series extends ​​ 100mV ​​ beyond ​​ the ​​ negative ​​ fsupply ​​ rail (VSS-0.1V  ​​​​ to  ​​​​ VDD-1.5V).  ​​​​ This  ​​​​ is  ​​​​ achieved  ​​​​ by using  ​​​​ complementary  ​​​​ input  ​​​​ stage.  ​​​​ For  ​​​​ normal operation, inputs should be limited to this range.

 

Rail-to-Rail Output

Rail-to-Rail ​​ output ​​ swing ​​ provides ​​ maximum possible ​​ dynamic ​​ range ​​ at ​​ the ​​ output. ​​ This ​​ is

particularly ​​ important ​​ when ​​ operating ​​ in ​​ low supply  ​​ ​​ ​​​​ voltages.  ​​ ​​ ​​​​ The  ​​ ​​ ​​​​ output  ​​ ​​ ​​​​ voltage  ​​ ​​ ​​​​ of

EC5912 series can typically swing to less than 10mV from supply rail in light ​​ resistive loads

(>100kΩ),  ​​ ​​​​ and  ​​ ​​​​ 60mV  ​​ ​​​​ of  ​​ ​​​​ supply  ​​ ​​​​ rail  ​​ ​​​​ in moderate resistive loads (10kΩ).

 

Capacitive Load Tolerance

The  ​​​​ EC5912  ​​​​ series  ​​​​ can  ​​​​ directly  ​​​​ drive  ​​​​ 200pF capacitive load in unity-gain without ​​ oscillation.

Increasing  ​​​​ the  ​​​​ gain  ​​​​ enhances  ​​​​ the  ​​​​ amplifier’s ability  ​​ ​​​​ to  ​​ ​​​​ drive  ​​ ​​​​ greater  ​​ ​​​​ capacitive  ​​ ​​​​ loads.  ​​ ​​​​ In unity-gain  ​​​​ configurations,  ​​​​ the  ​​​​ capacitive  ​​​​ load drive ​​ can ​​ be ​​ improved ​​ by ​​ inserting ​​ an ​​ isolation resistor ​​ RISO in series with the capacitive load, as shown in Figure 1.

 

 

 

 

 

 

 

 

 

 

The  ​​​​ bigger  ​​​​ the  ​​​​ RISO  ​​​​ resistor  ​​​​ value,  ​​​​ the  ​​​​ more stable  ​​​​ VOUT  ​​​​ will  ​​​​ be.  ​​​​ However,  ​​​​ if  ​​​​ there  ​​​​ is  ​​​​ a resistive ​​ load ​​ RL in ​​ parallel ​​ with ​​ the ​​ capacitive load, ​​ a ​​ voltage ​​ divider ​​ (proportional ​​ to ​​ RISO/RL) is formed, this will result in a gain error. The circuit ​​ in Figure 2 is an improvement to the

one in Figure 1. RF provides the DC accuracy by feed-forward ​​ the ​​ VIN ​​ to ​​ RL. ​​ CF ​​ and ​​ RISO ​​ serve to counteract the loss of phase margin by feeding the high ​​ frequency ​​ component  ​​​​ of ​​ the ​​ output ​​ signal back ​​ to ​​ the ​​ amplifier’s  ​​​​ inverting ​​ input,  ​​​​ thereby preserving the phase margin in

the overall feedback ​​ loop. ​​ Capacitive drive can ​​ be increased by ​​ increasing ​​ the ​​ value ​​ of ​​ CF. ​​ This ​​ in ​​ turn ​​ will slow down the pulse response.

 

 

 

 

 

 

 

 

 

 

 

Differential amplifier

The ​​ differential ​​ amplifier ​​ allows ​​ the ​​ subtraction of ​​ two ​​ input ​​ voltages ​​ or ​​ cancellation ​​ of ​​ a ​​ signal common the two inputs. It is useful as a computational ​​ amplifier ​​ in ​​ making ​​ a ​​ differential

To single-end conversion or in rejecting a common mode signal. Figure 3 shown the differential

amplifier using EC5912

 

 

If ​​ the ​​ resistor ​​ ratios ​​ are ​​ equal ​​ (i.e. ​​ R1=R3 ​​ and R2=R4), then

 

 

 

Instrumentation Amplifier

The input impedance of the previous differential amplifier is set by the resistors R1, R2, R3, and R4.

To ​​ maintain ​​ the ​​ high ​​ input ​​ impedance, ​​ one ​​ can use ​​ a ​​ voltage ​​ follower ​​ in ​​ front ​​ of ​​ each ​​ input ​​ as shown  ​​​​ in  ​​​​ the  ​​​​ following  ​​​​ two  ​​​​ instrumentation amplifiers.

 

Three-Op-Amp Instrumentation Amplifier

The  ​​​​ triple  ​​​​ EC5912  ​​​​ can  ​​​​ be  ​​​​ used  ​​​​ to  ​​​​ build  ​​​​ a three-op-amp instrumentation amplifier as shown in Figure 4. The amplifier in Figure 4 is a high input impedance  ​​​​ differential  ​​​​ amplifier  ​​​​ with  ​​​​ gain  ​​​​ of R2/R1.  ​​​​ The  ​​​​ two  ​​​​ differential  ​​​​ voltage  ​​​​ followers assure the high input impedance of the amplifier.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two-Op-Amp Instrumentation Amplifier

EC5912 ​​ can ​​ also ​​ be ​​ used ​​ to ​​ make ​​ a ​​ high ​​ input impedance two-op-amp instrumentation

amplifier as shown in Figure 5.

 

 

Where R1=R3 and R2=R4. If all resistors are equal,then Vo=2(V2-V1)

 

Single-Supply Inverting Amplifier

The ​​ inverting ​​ amplifier ​​ is ​​ shown ​​ in ​​ Figure ​​ 6. ​​ The capacitor ​​ C1 ​​ is ​​ used ​​ to ​​ block ​​ the ​​ DC ​​ signal ​​ going into the AC signal source VIN. The value of R1 and C1 ​​ set ​​ the ​​ cut-off ​​ frequency ​​ to ​​ fC=1/(2πR1C1). ​​ The DC gain is defined by VOUT=-(R2/R1)VIN

 

 

 

 

 

 

 

 

 

 

 

Sallen-Key 2nd Order Active Low-Pass Filter

EC4912  ​​ ​​​​ can  ​​ ​​​​ be  ​​ ​​​​ used  ​​ ​​​​ to  ​​ ​​​​ form  ​​ ​​​​ a  ​​ ​​​​ 2nd  ​​ ​​​​ order Sallen-Key  ​​​​ active  ​​​​ low-pass  ​​​​ filter  ​​​​ as  ​​​​ shown  ​​​​ in Figure 8. The transfer function from VIN to VOUT is given by

 

 

 

 

 

Where the DC ​​ gain ​​ is ​​ defined ​​ by ​​ ALP=1+R3/R4, and the corner frequency is given by

 

 

 

 

The pole quality factor is given by

 

Let ​​ R1=R2=R ​​ and ​​ C1=C2=C, the corner frequency and  ​​​​ the  ​​​​ pole  ​​​​ quality  ​​​​ factor  ​​​​ can  ​​​​ be simplified as below

 

 

And Q=2-R3/R4

 

 

 

 

 

 

 

 

 

 

 

Sallen-Key 2nd Order high-Pass Active Filter

The ​​ 2 nd order ​​ Sallen-key ​​ high-pass ​​ filter ​​ can ​​ be built  ​​​​ by  ​​​​ simply  ​​​​ interchanging  ​​​​ those  ​​​​ frequency selective components R1, R2, C1, and C2 as shown in Figure 9.

 

 

 

 

Where AHP=1+R3/R4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Information

 

MSOP-8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOLS

DIMENSIONS IN MILLIMETERS

DIMENSIONS IN INCHES

MIN

NOM

MAX

MIN

NOM

MAX

A

--

--

1.10

--

--

0.043

A1

0.05

--

0.15

0.002

--

0.006

A2

0.75

0.85

0.95

0.030

0.033

0.037

b

0.25

--

0.40

0.010

--

0.016

C

0.13

--

0.23

0.005

--

0.009

D

2.90

3.00

3.10

0.114

0.118

0.122

E

2.90

3.00

3.10

0.114

0.118

0.122

E1

4.90 BSC

0.193 BSC

e

0.65 BSC

0.026 BSC

L

--

--

0.55

--

--

0.022

Θ

0

--

0

--

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

1. Controlling Dimension: MM

2. Dimension D and E1 do not include Mold protrusion

3. Refer to Jedec standard MO187

4. Drawing is not to scale

 

 

 

 

 

 

SOP8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


規格書下載

規格是死的,設計是活的
我們提供具有靈活彈性的客製化IC與模組設計

告訴我們你想做的產品項目吧!

規格是死的,設計是活的
我們提供具有靈活彈性的客製化IC與模組設計

告訴我們你想做的產品項目吧!