EC5732|350kHz, Low Power ,Zero-Drift, CMOS, Dual Rail-to-Rail Operational Amplifier with RF Filter


規格書下載


 

350kHz, Low Power ,Zero-Drift, CMOS,

Dual Rail-to-Rail Operational Amplifier with RF Filter

EC5732

 

 

 

General Description

 

The EC5732 amplifier is Dual supply, micro-power, zero-drift CMOS operational amplifier, the amplifier offer bandwidth of 350kHz, rail-to-rail inputs and outputs, and single-supply operation from 2.5V to 5.5V. EC5732 uses chopper stabilized technique to provide very low offset voltage (less than 20µV maximum) and near zero drift over temperature. Low quiescent supply current of 20μA and very low input bias current of 10pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The ​​ EC5732 is available in SOP-8L and MOSP-8L packages. The extended temperature range of -40 to +125 over all supply voltages offers additional design flexibility.

Features

 

Single-Supply Operation from +2.5V ~ +5.5V

Rail-to-Rail Input / Output

Gain-Bandwidth Product: 350kHz (Typ.)

​​ Quiescent Current per Amplifier: 20μA (Typ.)

​​ Zero Drift:0.05uV/(Max.)

​​ Low offset voltage:20uV([email protected])

​​ Low input Bias Current:10pA([email protected])

​​ Slew Rate:0.1V/us(Typ.)

​​ Total Hamonic Distortion plus Noise:0.005%(Typ.)

​​ Embedded RF Anti-EMI filter.

​​ Operating Temperature: -40°C ~ +125°C

​​ Available in SOP-8L and MSOP-8L Packages

 

 

 

Applications

 

 

Portable Equipment

Mobile Communications

Filter and Buffer

Sensor Interface

Medical Instrumentation

Battery-Powered Instruments

Handheld Test Equipment

 

​​ 

​​ 

 

 

Pin Assignments

 

 

 

 

 

 

 

 

 

 

 

 

 

 

​​ 

 

 

 

 

Figure 1. Pin Assignment Diagram (SOP-8L and MSOP-8L Package)

 

 

 

 

 

 

Ordering Information

 

 ​​ ​​​​ EC5732NN XX ​​ X

M1SOP-8L

R1MSOP-8L

 

 

​​ 

 

 

 

 

 

 

 

 

 

 

 

Part Number

Package

Marking

Marking Information

EC5732NNM1R

SOP-8L

​​ EC5732

LLLLL

YYWWT

​​ 

1. LLLLLLast five Number of Lot No

2. YYYear Code

3. WWWeek Code

4. TInternal Tracking Code

EC5732NNR1R

MSOP-8L

 

 

Electrical Characteristics

 

Absolute Maximum Ratings

Condition

Min

Max

Power Supply Voltage (VDD to Vss)

-0.5V

+7V

Analog Input Voltage (IN+ or IN-)

Vss-0.5V

VDD+0.5V

PDB Input Voltage

Vss-0.5V

+7V

Operating Temperature Range

-40°C

+125°C

Junction Temperature

+150°C

Storage Temperature Range

-65°C

+150°C

Lead Temperature (soldering, 10sec)

+300°C

Package Thermal Resistance (TA=+25°C)

SOP-8L, θJA

130°C

MSOP-8L, θJA

210°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 

 

 

 

 

 

Electrical Characteristics

(VDD = +5V, Vss = 0V, VCM = 0V, VOUT = VDD/2, RL=10K tied to VDD/2, SHDNB = VDD, TA = -40°C to +125°C,

​​ unless otherwise noted. Typical values are at TA =+25°C.) (Notes 1)

 

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Units

Supply-Voltage Range

VDD

Guaranteed by the PSRR test

2.5

-

5.5

V

Quiescent Supply Current

(per Amplifier)

IQ

VDD = 5V

14

20

26

μA

Input Offset Voltage

VOS

 

-

-

20

μV

Input Offset Voltage Tempco

ΔVOS/ΔT

 

-

-

0.05

μV/°C

Input Bias Current

IB

(Note 2)

-

10

-

pA

Input Offset Current

IOS

(Note 2)

-

100

-

pA

Input Common-Mode Voltage

Range

VCM

 

-0.1

-

VDD+0.1

V

Common-Mode Rejection Ratio

CMRR

VDD=5.5 Vss-0.1VVCMVDD+0.1V

90

110

-

dB

Vss≤VCM≤5V

95

115

-

dB

Power-Supply Rejection Ratio

PSRR

VDD = +2.5V to +5.5V

85

105

-

dB

Open-Loop Voltage Gain

AV

VDD=5V, RL=10k,

0.05V≤VO≤4.95V

100

120

-

dB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrical Characteristics(Continued)

 

 

Parameter

Symbol

Conditions

Min.

Typ.

Max.

Units

Output Voltage Swing

VOUT

|VIN+-VIN-|    10mV,  RL  =  100k  to

VDD/2, VDD-VOH

-

6

-

mV

|VIN+-VIN-|    10mV,  RL  =  100k  to

VDD/2, VOL-VSS

-

6

-

mV

|VIN+-VIN-|      10mV,   RL   =   5k   to

VDD/2, VDD-VOH

-

60

-

mV

|VIN+-VIN-|      10mV,   RL   =   5k   to

VDD/2, VOL-VSS

-

60

-

mV

Output Short-Circuit Current

ISC

Sinking or Sourcing

-

5

-

mA

Gain Bandwidth Product

GBW

AV = +1V/V

-

350

-

kHz

Slew Rate

SR

AV = +1V/V

-

0.1

-

V/μs

Settling Time

tS

To 0.1%, VOUT = 2V step

AV = +1V/V

-

20

-

μs

Over Load Recovery Time

 

VIN  Gain=VS

-

100

-

μs

Input Voltage Noise Density

en

ƒ = 1kHz

-

70

-

nV/Hz

ƒ = 10kHz

-

60

-

Total Harmonic Distortion plus

Noise

THD+N

VOUT = 2VPP,Av = +1V/V,

RL = 10k to GND, ƒ = 1kHz

-

0.005

-

%

VOUT = 2VPP,Av = +1V/V,

RL =10k to GND, ƒ = 10kHz

-

0.1

-

Note 1: All devices are 100% production tested at TA = +25°C; all specifications over the automotive temperature range is guaranteed by design, not production tested.

Note 2: Parameter is guaranteed by design.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical characteristics

At TA=+25°C, RL=10 kΩ connected to VS/2 and VOUT= VS/2, unless otherwise noted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical characteristics(Continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application Information

Size

EC5732 ​​ series ​​ op ​​ amps ​​ are ​​ unity-gain ​​ stable and ​​ suitable ​​ for a ​​ wide ​​ range ​​ of  ​​​​ general-purpose applications. The small footprints of the EC5732 series packages save space on printed circuit boards and enable the design of smaller electronic products.

 

Power Supply Bypassing and Board Layout

EC5732 ​​ series ​​ operates ​​ from ​​ a ​​ single ​​ 2.5V ​​ to 5.5V supply or dual ±1.25V to ±2.75V supplies. For best performance,  ​​​​ a  ​​​​ 0.1µF  ​​​​ ceramic  ​​​​ capacitor  ​​​​ should  ​​​​ be placed close to the VDD pin in single supply operation. For dual supply operation, both VDD and VSS supplies should be ​​ bypassed ​​ to ​​ ground ​​ with ​​ separate ​​ 0.1µF ​​ ceramic capacitors.

 

Low Supply Current

The  ​​​​ low  ​​​​ supply  ​​​​ current  ​​​​ (typical  ​​​​ 40µA)  ​​​​ of EC5732 series will help to maximize battery life.

They are ideal for battery powered systems

 

Operating Voltage

EC5732 series operate under wide input supply voltage  ​​​​ (2.5V  ​​​​ to  ​​​​ 5.5V).  ​​​​ In  ​​​​ addition,  ​​​​ all  ​​​​ temperature specifications apply from -40 to +125. Most behavior  ​​​​ remains  ​​​​ unchanged  ​​​​ throughout  ​​​​ the  ​​​​ full operating  ​​​​ voltage  ​​​​ range. These ​​ guarantees ensure operation throughout

the single Li-Ion battery lifetime

 

Rail-to-Rail Input

The  ​​​​ input  ​​​​ common-mode  ​​​​ range  ​​​​ of  ​​​​ EC5732 series extends 100mV beyond the supply rails (VSS-0.1V to VDD+0.1V). This is achieved ​​ by using complementary input  ​​​​ stage.  ​​​​ For  ​​​​ normal  ​​​​ operation,  ​​​​ inputs  ​​​​ should  ​​​​ be limited to this range.

 

Rail-to-Rail Output

Rail-to-Rail  ​​​​ output  ​​​​ swing  ​​​​ provides  ​​​​ maximum  ​​​​ possible dynamic range at the output. This is particularly important when  ​​​​ operating  ​​​​ in  ​​​​ low  ​​​​ supply  ​​​​ voltages. The  ​​​​ output voltage ​​ of ​​ EC5732series ​​ can ​​ typically ​​ swing to less ​​ than ​​ 10mV ​​ from ​​ supply ​​ rail ​​ in ​​ light ​​ resistive ​​ loads

(>100kΩ), and 60mV of supply rail in moderate resistive loads (5kΩ).

 

Capacitive Load Tolerance

The ​​ EC5732 ​​ series  ​​​​ can ​​ directly ​​ drive ​​ 250pF capacitive  ​​​​ load  ​​​​ in  ​​​​ unity-gain  ​​​​ without  ​​​​ oscillation. Increasing ​​ the ​​ gain ​​ enhances ​​ the ​​ amplifier’s ​​ ability ​​ to drive  ​​ ​​​​ greater  ​​ ​​​​ capacitive  ​​ ​​​​ loads.  ​​ ​​​​ In  ​​ ​​​​ unity-gain configurations, the capacitive load drive can be improved by ​​ inserting ​​ an ​​ isolation ​​ resistor ​​ RISO ​​ in ​​ series ​​ with ​​ the capacitive load, as shown in Figure 2.

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

 

The bigger the RISO resistor value, the more stable VOUT will be. However, if there is a resistive load RL in parallel with the capacitive load, a voltage divider (proportional to RISO/RL) is formed, this will result in a gain error.

The ​​ circuit ​​ in ​​ Figure ​​ 3 ​​ is ​​ an ​​ improvement ​​ to ​​ the ​​ one ​​ in Figure ​​ 2. ​​ RF ​​ provides ​​ the ​​ DC ​​ accuracy ​​ by ​​ feed-forward the ​​ VIN ​​ to ​​ RL. ​​ CF ​​ and ​​ RISO serve ​​ to counteract the loss of phase margin by feeding the high frequency component of the ​​ output ​​ signal ​​ back ​​ to ​​ the ​​ amplifier’s ​​ inverting ​​ input, thereby  ​​ ​​​​ preserving  ​​​​ the  ​​ ​​​​ phase  ​​​​ margin  ​​​​ in  ​​ ​​​​ the  ​​ ​​​​ overall feedback  ​​​​ loop.  ​​​​ Capacitive  ​​​​ drive  ​​​​ can  ​​​​ be  ​​​​ increased  ​​​​ by increasing the value of CF. This in turn will slow down the

pulse response.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

 

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It  ​​​​ is  ​​​​ useful  ​​​​ as  ​​​​ a  ​​​​ computational  ​​​​ amplifier  ​​​​ in  ​​​​ making  ​​​​ adifferential  ​​​​ to  ​​​​ single-end  ​​​​ conversion  ​​​​ or  ​​​​ in  ​​​​ rejecting  ​​​​ a common ​​ mode ​​ signal. ​​ Figure ​​ 4. ​​ shown ​​ the ​​ differential amplifier using EC5732.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Differential Amplifier

 

 

 

If the resistor ratios are equal (i.e. R1=R3 and R2=R4), then

 

 

 

Instrumentation Amplifier

The input impedance of the previous differential amplifier is set ​​ by ​​ the ​​ resistors ​​ R1, ​​ R2, ​​ R3, ​​ and ​​ R4. ​​ To ​​ maintain ​​ the high ​​ input ​​ impedance, ​​ one ​​ can ​​ use ​​ a ​​ voltage ​​ follower ​​ infront of each  ​​​​ input as shown  ​​​​ in  ​​​​ the  ​​​​ following  ​​​​ two instrumentation amplifiers.

 

Three-Op-Amp Instrumentation Amplifier

The ​​ dual ​​ EC5732 can ​​ be ​​ used ​​ to ​​ build ​​ a ​​ three-op-amp instrumentation amplifier as shown in Figure 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Three-Op-Amp Instrumentation Amplifier

 

The ​​ amplifier  ​​​​ in  ​​​​ Figure  ​​​​ 5 ​​ is  ​​​​ a ​​ high  ​​​​ input  ​​​​ impedance differential amplifier with gain of R2/R1. The two differential voltage ​​ followers ​​ assure ​​ the ​​ high ​​ input ​​ impedance ​​ of ​​ the amplifier.

 

 

 

Two-Op-Amp Instrumentation Amplifier

EC5732 ​​ can ​​ also ​​ be ​​ used ​​ to ​​ make ​​ a ​​ high ​​ input impedance two-op-amp instrumentation amplifier as shown in Figure 6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Two-Op-Amp Instrumentation Amplifier

 

Where R1=R3 and R2=R4. If all resistors are equal, then VOUT=2(VIP-VIN)

 

Single-Supply Inverting Amplifier

The  ​​​​ inverting  ​​​​ amplifier  ​​​​ is  ​​​​ shown  ​​​​ in  ​​​​ Figure  ​​​​ 7.  ​​​​ The capacitor C1 is used to block the DC signal going into the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Single Supply Inverting Amplifier

 

​​ Low Pass Active Filter

The low pass active filter is shown in Figure 8. The DC gain is defined by –R2/R1. The filter has a -20dB/decade roll-off after its corner frequency ƒC=1/(2πR3C1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Low Pass Active Filter

 

Sallen-Key 2nd Order Active Low-Pass Filter

EC5732 can be used to form a 2nd ​​ order Sallen-Key ​​ active ​​ low-pass ​​ filter ​​ as ​​ shown ​​ in ​​ Figure ​​ 9. The transfer function from VIN to VOUT is given by

 

 

 

 

Where the DC gain is defined by ALP=1+R3/R4, and the corner frequency is given by AC ​​ signal ​​ source ​​ VIN. ​​ The ​​ value ​​ of ​​ R1 ​​ and ​​ C1 ​​ set ​​ the cut-off ​​ frequency ​​ to ƒC=1/(2πR1C1). The ​​ DC ​​ gain ​​ is defined by VOUT=-(R2/R1)VIN

 

 

 

The pole quality factor is given by

 

 

 

Let R1=R2=R and C1=C2=C, the corner frequency and the pole quality factor can be simplified as below

 

And Q=2-R3/R4

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Sanllen-Key 2nd Order Active Low-Pass Filter

 

Sallen-Key 2nd Order high-Pass Active Filter

The ​​ 2nd order ​​ Sallen-key ​​ high-pass ​​ filter ​​ can ​​ be ​​ built ​​ by simply interchanging those frequency selective components R1, R2, C1, and C2 as shown in Figure 10.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Sanllen-Key 2nd Order Active High-Pass Filter

 

Input Offset Cancellation

The EC5732 series opamps use internal chopping stabilized ​​ technique ​​ to ​​ cancel ​​ dc ​​ offset ​​ and ​​ flick ​​ noise. Since the offset temperature drift is a dc parameter, it is also cancelled by the chopping technique. The amplifier requires approximately 100µs to achieve the specified Vos accuracy.

 

 

 

 

Package Information

SOP-8L